place

Gran colisionador de hadrones

AinCERNCiencia de 2008Ciencia y tecnología de FranciaCiencia y tecnología de Suiza
E-ScienceFísica más allá del Modelo EstándarSincrotrones
CERN accelerator complex (cropped 2)
CERN accelerator complex (cropped 2)

El Gran Colisionador de Hadrones (LHC; en inglés: Large Hadron Collider) es el acelerador de partículas más grande y de mayor energía que existe y la máquina más grande construida por el ser humano en el mundo.[1]​[2]​ Fue construido por la Organización Europea para la Investigación Nuclear (CERN) entre 1989 y 2001 en colaboración con más de 10 000 científicos y cientos de universidades y laboratorios, así como más de 100 países de todo el Mundo.[3]​ Se encuentra en un túnel de 27 kilómetros de circunferencia y a una profundidad máxima de 175 metros bajo tierra, debajo de la frontera entre Francia y Suiza, cerca de Ginebra. Las primeras colisiones se lograron en 2010 a una energía de 3,5 teraelectronvoltios (TeV) por haz, aproximadamente cuatro veces el récord mundial anterior, alcanzados en el Tevatron.[4]​[5]​ Después de las correspondientes actualizaciones, alcanzó 6,5 TeV por haz (13 TeV de energía de colisión total, el récord mundial actual).[6]​[7]​[8]​[9]​ A finales de 2018, entró en un período de parada de dos años, que finalmente se ha prolongado hasta 2022, con el fin de realizar nuevas actualizaciones, con lo cual se espera posteriormente alcanzar energías de colisión aún mayores. El colisionador tiene cuatro puntos de cruce, alrededor de los cuales se colocan siete detectores, cada uno diseñado para ciertos tipos de experimentos en investigación. El LHC hace colisionar protones, pero también puede utilizar haces de iones pesados (por ejemplo de plomo) realizándose colisiones de átomos de plomo normalmente durante un mes al año. El objetivo de los detectores del LHC es permitir a los físicos probar las predicciones de las diferentes teorías de la física de partículas, incluida la medición de las propiedades del bosón de Higgs[10]​ y la búsqueda de una larga serie de nuevas partículas predicha por las teorías de la supersimetría,[11]​ así como también otros problemas no resueltos en la larga lista de elementos en la física de partículas.

Extracto del artículo de Wikipedia Gran colisionador de hadrones (Licencia: CC BY-SA 3.0, Autores, Material gráfico).

Gran colisionador de hadrones
Route Rutherford, Gex

Coordenadas geográficas (GPS) Dirección Página web Lugares cercanos
placeMostrar en el mapa

Wikipedia: Gran colisionador de hadronesContinuar leyendo en Wikipedia

Coordenadas geográficas (GPS)

Latitud Longitud
N 46.233333333333 ° E 6.05 °
placeMostrar en el mapa

Dirección

CERN - Site de Meyrin

Route Rutherford
01280 Gex
Auvergne-Rhône-Alpes, Francia
mapAbrir en Google Maps

Página web
home.cern

linkVisitar el sitio web

CERN accelerator complex (cropped 2)
CERN accelerator complex (cropped 2)
Compartir la experiencia

Lugares cercanos

Experimento ATLAS

El ATLAS (A Toroidal LHC ApparatuS, Aparato Toroidal del LHC) es uno de los siete detectores de partículas (junto al ALICE, CMS, TOTEM, LHCb, LHCf y MoEDAL) construido en el LHC (Gran Colisionador de Hadrones), el moderno acelerador de partículas del CERN en Suiza. Su tamaño es de 46 metros de largo y 25 de diámetro, y pesa unas 7000 toneladas. En el proyecto están implicados unos 3.000 científicos e ingenieros de sobre 175 instituciones pertenecientes a 38 países diferentes. Los primeros 15 años, el proyecto ha sido liderado por Peter Jenni, sucedido por Fabiola Gianotti en 2009 hasta 2013. Desde entonces fue encabezado por David Charlton. Se esperaba que estuviera plenamente operativo a principios de 2008. De este experimento se espera que detecte partículas muy masivas no detectables anteriormente, que operaban a menores energías, y que aporte luz a nuevas teorías físicas más allá del Modelo Estándar. El grupo de físicos que construyó el detector, conocido como Colaboración ATLAS, se formó en 1992, al fusionarse los experimentos EAGLE (Experiment for Accurate Gamma, Lepton and Energy Measurements, Experimento para la Medida Precisa de Gammas y Leptones) y ASCOT (Apparatus with Super COnducting Toroids, Aparato con Toroides SuperCOnductores), para dar lugar a un único detector multipropósito para el LHC. El diseño de ATLAS es una combinación de ambos experimentos, además de ideas aportadas durante el diseño e investigación del Supercolisionador superconductor. El ATLAS tal y como está ahora se concibió en 1994, y obtuvo la financiación oficial a principios de 1995. Otros países, laboratorios y universidades se unieron al proyecto en los años siguientes, e incluso en la actualidad (2007) se siguen sumando participantes. Los trabajos de montaje empezaron en cada grupo de forma individual, y en 2003 comenzaron los trabajos de montaje in situ. El ATLAS es un detector multipropósito. Cuando los haces de protones producidos por el acelerador interactúen en el centro del detector, se producirán una serie de partículas con un amplio rango de energías. Más que centrarse en un determinado tipo de partículas, el ATLAS se ha diseñado para que mida el mayor intervalo posible de energías. Se pretende que, sea cual sea el proceso producido o las partículas generadas, el ATLAS sea capaz de detectarlas y medir sus propiedades. Experimentos anteriores, como el Tevatrón y el LEP, fueron diseñados con un propósito similar. Sin embargo, las condiciones únicas de operación del ATLAS (energías nunca vistas y un ritmo de colisiones extremadamente elevado) hacen de su diseño el más complejo hasta la fecha.